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J .  Phys.: Condens. Matter 3 (1991) F109-Fl25. Printed in the UK 

Molecular orientational structure of the water 
tiquidhapour interface 

B Yang, D E Sullivan, B Tjipto-Margot and C G Gray 
Physics Department and Guelph-Waterloo Program for Graduate Work in Physics, 
Universityof Guelph, Guelph, Ontario NIGZWI. Canada 

Received 20 May 1991 

Abstrad. Theoretical andexperimental results for thedistribution ofmolecular orientations 
at the liquidlvapour interface of water are compared. The present calculations are based on 
an extended mean-field density functional theory applied to an intermolecular potential 
model containing dipolar and quadrupolar interactions. with parameten chosen to agree 
with the TIP4P model of water. The results for the orientational order parameten at the 
interface are u e d  to calculate several observable quantities as functions of temperature, 
namely: (i) the surface electrostatic potential; (ii) the coefficient of ellipticity; (iii) the 
nonlinear susceptibility measured by second-harmonic generation. Comparisons are made 
with both the experimental and computer simulation data for water. The limitations of 
current methods for revealing the preferred molecular orientations at an interface are 
discussed. 

1. Introduction 

Recently, using the x-ray reflectivity technique [I]. there has been progress in the long. 
standing problem [Z] of the experimental determination of the number density profile 
p ( z )  at the liquid/vapour interface. For molecular fluids such as N,, HCI and H,O, the 
more detailed quantity p ( z ,  w )  is also of interest, giving the distribution of density and 
molecular orientation o along the direction z normal to the surface. In this paper we 
briefly review some relevant experiments, and compare the results of our recent 
extended mean-field-theory calculations for water [3] with experiment, and also with 
the results from computer simulations [4,5]. 

Previous theoretical [6-11] and simulation work [12,13] for&, w )  has been limited 
tolinearmolecules, apartfromtherecentsimulationsofwater [4,5,14,15] andmethanol 
[16]. In comparing our calculations with simulations we mainly restrict ourselves to 
[4,5], since the potential model (TIP~P) employed is closest to the one we use (see section 

It has been found necessary [3, 111 to extend the standard mean-field theory by 
including pair correlations to the lowest order contributing, in order to obtain orien- 
tational symmetry breaking in the interfacial region. We also find it necessary to include 
quadrupolar, as well as dipolar, intermolecular forces, in order to break the ny-plane 

4). 

t Present address: Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA. 
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FigurcI.Thesurfacetensionof(a) Ar(from[17])and(b) H,O(from[18])asafunctionof 
temperature 

reflection symmetry. We find a slight preference for the water dipole molecules at the 
interfacetobe pointingdownwards (i.e. towards the liquidside) compared with upwards. 

2. Review of relevant experiments 

2.1. Surface entropy 

We recall the relation [2] Ss = -dy(T)/dT between the surface entropy Ss and surface 
tension y ( T ) ,  where Tis the temperature. In figure 1 we show y ( T )  for Ar and H20. 
Note that Idy(T)/dTI increases monotonically for AI with decreasing T ,  whereas there 
is an inflection point for H,O at T =  525 K. We interpret the decreasing slope below 
525 K for H 2 0  as evidence of interfacial orientational ordering, which reduces the 
surface entropy. The evidence is obviously indirect, and it is impossible to obtain details 
of the preferred molecular orientations from surface entropy measurements. 

2.2. Surface potential 

The surface potential A q  is the work done per unit charge in moving a hypothetical test 
charge through the interface, from the vapour to the liquid side. For non-polarizable 
molecules A q  is given rigorously by [19] 

D/ 

AV = - 4 w  I-, &P(Z)(COS 0) - ~ ~ O ( P L  - PG) (2.1) 

where 0 is the angle between the molecular dipole moment p and the z-axis, where 
positive z corresponds to the vapour side of the interface. 

(, . . ) = l d o f ( z , o ) ( .  . .) 

withf(z, w )  theorientational distribution functiondefined in (3.5) below, pLandpG are 
the bulk liquid and vapour densities, respectively, and 0 = IX,q,r i  is one third of the 
trace of the quadrupole moment tensor of an isolated molecule (see, e.g., equation 
(2.54) of 1201). The derivation of (2.1) is discussed further in section 4.3. 
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Figure 2. A schematic diagram of an ellipsometry experiment, with the polarization vector 
p in the plane of the page. G and L denote the gas and liquid sides of the interface. 
respectively. 

Since experiments are performed using real ions that interact with water molecules 
(e.g., solvation occurs), rather than with hypothetical test charges, the relation between 
(2.1) and what is measured is somewhat obscure [5 ] .  For water, AQJ appears to be 
positive, and about 50mV in magnitude [ 5 ] .  As we shall see, the quadrupole term 
appearstobemuch largerthan thedipole term forwater, whichprecludeslearningmuch 
about (cos 0) for water from Ap, measurements. 

2.3. Ellipsometry 

In figure 2 we show schematically a beam of light partially reflected off the liquid surface, 
with polarization state p of the incident beam in the scattering plane as shown. If the 
angle of incidence Bi equals the Brewster angle BB, the reflected intensity vanishes, by 
the definition of Be. In actuality, the reflected intensity completely vanishes only for an 
infinitely sharp interface. The real interface is at least a few angstroms thick, and the 
reflected amplitude is proportional to 7 = q0 + AV, where the isotropic and anisotropic 
contributions are given by (see section 4.4) 

qo = J -~ dz [ E ( z )  - E' ] [E (z )  - E ~ ] / E ( z )  
-DL 

Here E ( Z )  is the local dielectric constant for the frequency of the light wave, given in 
terms of p(z) approximately by the ClausiueMossottifiation, eL and eG are the bulk 
values, 01 is the mean polarizability of a molecule, and A&) is given by 

- 
W z )  = Aail~*.o(z) + A w ~ % , * ( z ) / f i  - (2.4) 

where A q  = wZ.,. - wand Am, = - 0 1 ~ , ~ ~  are molecularpolarizability anisotropies, 
with 0 1 ~ ~ ~ ~ ,  etc principal-axis componentst. The local order parameters ~ , , " ( z )  are defined 

t For the definition of the principal axes used, see [ZO], p 582. Briefly, L' is the twofold axis, and z'x' is the 
molecular plane. 
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in (3.10) below. The term (2.3) contains the information about the preferred molecular 
orientations in the interface. As discussed in section 4, for water this term is found to be 
several orders of magnitude smaller than the isotropic contribution qo and may be 
difficult to detect experimentally. 

2.4. Second-harmonic generation 

If the incident beam in figure 2 has frequency w ,  the reflected beam also has frequency 
w to a good approximation. However, with high-intensity laser sources, one can detect 
small additional components at frequency 2w, 3w, . . . [21]; it is the 2w component, the 
second-harmonic generation (SHG), which interests us here. 

The SHG has its molecular origin in the hyperpolarizability p of a molecule. In the 
presence of an external electric field E(t) = E,cos wt, the dipole moment p,.., induced 
in a molecule is given by (see, e.g., [20], p 540) 

plnd= a . E  + @:EE + . . . (2.5) 
where the additional terms, . , do not concern us here. In (2.5). a. E is the usual linear 
response term. with (Y the polarizability, and 4p:EE is the non-linear response term. If 
E varies at frequency w ,  EE will vary at 2w, so that SHG arises. 

One can relate the nonlinear macroscopi~susceptibility,y(~) to p in the same way that 
one relates the linear susceptibility x to a. To lowest order in p ,  neglecting local field 
effects, one finds (211 

2') = dz P(Z)(P).  (2.6) 

We see from (2.6) that to obtain non-vanishing SHG we require: (i) p # 0, that is 
molecules such as HCI and H20, which lack a centre of inversion: (ii) ( p )  # 0, that is 
the orientational average must be non-vanishing. In bulk liquid and gas, (6) = 0. so 
that (2.6) will be sensitive only to the surface molecules, where there are preferred 
orientations. 

For H 2 0 ,  as shown in section 4.5, (p)  can be expressed in terms of the following 
three order parameters q1.J~)  defined in (3.10): v,,~,  q3,0 and q3,*. The principal-axis 
components/3,,,.,., /3,.,.,,. &yry, of p (see footnote on p F111) are also involved. 

Of the four experiments described SHG appears to be the best candidate for studying 
the alignment of molecules at surfaces. The method is, however, limited to non- 
centrosymmetric molecules. 

3. Theory 

The present calculations are based on an extended mean-field theory [3,11] for non- 
uniform molecular fluids, which generalizes the density-functional methods used in 
recent years for studying interfaces of liquid crystals [22, 231 as well as other systems 
[8,9]. The particular generalization of these earlier theories is intended to include non- 
linear (in practice, quadratic) orders of the anisotropic part of the intermolecular pair 
potentialin the free-energy functional. Thisismotivated by the failureof standard mean- 
field theory, as wellasother approaches that containonlylinearordersof the anisotropic 
potential [6 ,7] ,  to account for any interfacial orientational ordering induced by purely 
multipolar anisotropies. An extended mean-field theory similar to the one considered 
here was first introduced by Teixeira and Telo da Gama [l I] and was applied to a model 
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fluidwithdipoldipole interactions. The free-energyfunctional employed in the present 
workdiffersslightlyfromthat in [ll],aspointedout below. Furthermore, we generalize 
the anisotropic part of the potential to include dipole-quadrupole and quadrupole- 
quadrupole couplings, which appear in a more suitable model [24] for the description of 
water. 

A derivation of the extended mean-field theory is described elsewhere [3], and here 
we shall merely summarize the key points. The theory is based on an intermolecular pair 
potential of the form 

where ri and wi = (ei, vi, xi) denote the position and Euler angles of molecule i. The 
isotropic reference potential V,, is assumed to depend only on the intermolecular 
distance rI2 = Ir2 - rl l .  The 'perturbative' part of the interaction is in turn decomposed 
as 

In keeping with a 'van der Waals' type of description, V,ef is regarded as purely repulsive, 
and here is taken as a hard-sphere potential with molecular diameter u. The function 
Vat, describes isotropic attractive interactions, while all anisotropic components of the 
potential are contained in Van. 

The theory consists of expressing the grand potential S as a functional of the one- 
particle probability density p(r, w ) ,  

The first term Qcef is the total contribution to the grand potential that results from the 
interaction Vwf(rlz) alone, albeit in the presence of the full probability density p(r. w ) .  
Applying an often-used local thermodynamic approximation, we have [3,11,22,23] 

V(rIWlrr2WZ) = VrCf(T12) + vpert(rlwl>r2w2) (3.1) 

vperr(rl~1.r2Wz) = vat,(r12) + va.(rlwl,rzW2). ( 3 4  

S = Q,,, + A S M F  + AQEMF (3.3) 

= I drf&(r)) + I drdw p(r, w)Wln[8n2f(r, U)] - r3 (3.4) 

wheref,&) is the bulk Helmholtz free-energy density of a uniform reference fluid with 
numberdensityp, withp, the totalchemical potentialofthe system. The secondintegral 
in (3.4) includes the contribution of the orientational entropy, %,here f(r, w )  is the 
normalized orientation distribution function 

f k  = P(r> w) /p(r )  
(3.5) 

The second term in (3.3), ASMF, describes the mean-field average of the perturbative 
potential, 

AQMF = i 16.l dwl 6 . 2  d w  p(rl. w 1 ) V ~ ~ ( 1 2 ) p ( r ~ .  w2). (3.6) 

The third term in (3.3). ASEMF, accounts for corrections to the mean-field approxi- 
mation, and is given here by [3] 
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where E (kT)-' is the inverse temperature. This has been derived in [3] from the 
leading-order correction to mean-field theory in powers of the inverse range of the 
perturbation V,, [25], formally assuming the latter to the be weak and of long range, 
and with the additional approximations of keeping only quadratic terms in V,,,, and 
replacing reference fluid correlation functions by their high-density limits. Note that 
(3.7) contains only the anisotropic component V&2) rather than the full perturbation 
VPn(12), as it is easy to show that the isotropic component Vatt(12) cancels from that 
expression. This differs from the form of the correction term used in [ll], which retains 
only the first line in (3.7) with the full V,, (12) in place of Vao(12). In practice we have 
made one simplification of (3.7). namely to retain only up to quadratic order in the 
difference of the distribution function from its isotropic limit, Af(r, w )  =f(r ,  w )  - 
1/$n2, motivated by the anticipated weakness of interfacial orientational ordering. 

Theequilibrium probability density&, w )  is thesolutionofthe variationalcondition 
6Q/6p(r, w )  = 0. This leads [3] to coupled integral equations for p(r )  andf(r, w )  that 
we shall not write out explicitly here. For the potential components, we have chosen 

(3.8) 

with V,,(12) the potential generated by the presence of a point dipole p and non-axial 
point quadrupole Qat the centre of each molecule, 

(3.9) 
V A 2 )  = V,,(12) + V,O(l2) + V0,(12) + Voo(l2) r12 > 0 

= O  rI2 < U. 

The potentials (3.8) and (3.9) can be taken equal to zero for rI2  < obecause of the hard- 
sphere core potential. Explicit expressions for the multipolar interactions Vp,(12), etc. 
in terms of distance rI2 and generalized spherical harmonics D$,",(wi)  of the molecular 
orientations, are given in [20]. We assume the molecular symmetry is f&, as is appro- 
priate for water. 

The theory has been applied to a planar interface between coexisting liquid and 
vapour phases. The probability density is assumed to vary spatially only in the direction 
i normal to the interface, with positive z on the vapour side as in figure 2. All spatial 
integrals entering the theory can then be reduced to one-dimensional quadratures along 
z. involving the number density p(z )  and several orientational order parameters q,&) 
defined as 

(3.10) 

where P, is the lth-order Legendre polynomial. Implicit here is the fact that the dis- 
tribution function f ( i ,  U) should be independent of the azimuthal orientation of the 
molecular dipole axis about the z-axis, because of rotational isotropy in the plane of the 
interface.The relevant Euler anglesin ware then O a n d ~ ,  the former denoting the angle 
between the molecular dipole (or z ' )  and the space-fixed z-axis, and the latter denoting 
the angle between the molecular symmetry plane (orx'z' plane) and the zz' plane [ZO]. 
See figure 3. 
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Fsure 3. The orientation of a water molecule; I is the space-fixed axis and I' is the body- 
fixed axis. 

The solution of the integral equations for p ( z )  andf(z, w )  is obtained by spherical 
harmonic and iterative techniques similar to those used in previous work [22, 231. 
For given molecular interaction parameters and temperature T,  the solution requires 
specifying the chemical potential p c  as well as the densities p o  and pL of the bulk 
coexisting vapour and liquid, the latter entering as boundary values for p ( r )  in the 
limits z+ m and z -+ - -, respectively. These are found by applying a double-tangent 
construction to the bulk Helmholtz free-energy corresponding to this theory, as 
described in more detail elsewhere [3]. The Carnahan-Starling approximation'is used 
for the reference hard-sphere free-energy density f&). Note that, because of the 
rotational isotropy of the bulk phases, the order parameters t ) , . n ( ~ )  vanish in the limits 
Z'? CO, 

4.Results and comparison with experimental observables 

4.1. Molecular parameters 

We have implemented the preceding theory using values of the .)ole and quadrupole 
moments consistent with the charge distribution of the TlP4P model of water 1261. These 
are listed in table 1, along with our choices for the isotropic interaction parameters E and 
U. The former is equal to the Lennard-Jones strength parameter of the Tw4P model 
[26]. Rather than equating U with the corresponding Lennard-Jones diameter of the 
T I P ~ P  model, we have instead vaned values of U to yield a theoretical value for the 

Table 1. Values of the molecular potential parameters for water used in this work: p is the 
magnitude of the dipole moment and Q,,, are principal-axiscomponents of the quadrupole 
moment, with the origin taken at the oxygen atom. 

@ (10-'8esu) Q,~,~(10-26esu) Q,,,. - Q,,y,(lO-"esu) ~(lO-"erg) o(A) 

2.1773 0,17119 4.29311 1.0777 2.95 
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liquid-vapour critical temperature T, comparable with experimental and simulation 
values for water [3]. The value quoted in table 1, U = 2.95 A, results in T, = 604.97 K. 

It is important to mention that the values of the quadrupole moments listed in table 
1 are based on choosing the molecular centre at the site of the oxygen atom in the water 
molecule. This is consistent with the centre used for the spherically symmetric Lennard- 
Jones component of the T I P ~ P  model. The significance of this choice of centre is that it 
vields a positive value for the Q,.,, quadrupole moment. We have shown in detail 
klsewhere [3] that, in the present theory, the direction of interfacial dipolar alignment 
is determined by the sign of Q,.,., such that a positive value of the latter results in a 
preference for surface dipoles to point towards the liquid. This agrees with the earlier 
work by Stillingerand Ben-Naim [24]. 

4.2. Interfacial tension and structure 

The basic results of the calculations are the interfacial tension y (given by the excess 
grand potential per unit area). the density profile p ( z ) ,  the orientational distribution 
function f(z, w ) ,  and the order parameters q,,"(z) derived from f(z, w )  according to 
(3.10). One drawback of the present theory, which we attribute to its basis in a per- 
turbationexpansion inpowersof Vp,,(12),isthat it islimited to fairly high temperatures. 
I n  particular. for the present choice of interaction parameters, the interface becomes 
unstable at temperatures lower than 400 K. Below this temperature, p(z )  and f ( z ,  w )  
develop oscillations which, on iteration, increase in both range and amplitude and 
appear to grow into the bulk liquid. In addition, the interfacial tension y begins to 
decrease with decreasing temperature. These features suggest that the bulk isotropic 
liquid becomes unstable relative to an ordered. smectic-like phase [3]. Despite this 
limitation, comparison of our results [3] with those of computer simulations indicates 
that the theory gives the correct interfacial orientational structure in the temperature 
regime of its stability. 

Figure 4 shows the interfacial tension y as a function of reduced temperature TIT, 
in the high-temperature region, to  within a few degrees of the critical point. The 
divergenceof the interfacial width closer to T,precludes accurate numerical calculations 
in this limit. The experimental surface tension is also shown (with abscissa scaled in 
terms of the experimental value, T, = 647 K). The theoretical surface tension is seen to 
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Figure 5. The number density profile of 
water for various temperatures as a func. 
tion of z/a, where a is the hard-sphere 
diameter. 

Figure 6. The order parameter q,&) for 
various temperatures. 

increase much more rapidly with decreasing temperature compared with the exper- 
imental data, related to the inadequacy of the theory at low temperatures. Note that, in 
the temperature range shown in figure 4, the theoretical curve does not exhibit the 
inflection point associated with the onset of decreasing surface entropy, which was 
described in section 2.1. 

Curves of the calculated number density p(z) at various temperatures in the allowed 
range of the theory are shown in figure 5. These exhibit the expected broadening of the 
interfacial width with increasing TIT,. 

For displaying the interfacial orientational structure, we focus here on the order 
parameters q&). Full details of the distribution functionf(2, w) itself are described in 
131. Figures 6 to 8 show plots of the three lowest-order order parameters q l , ~ ( z ) ,  q&) 
and q&), respectively. In all cases the order parameters increase in amplitude with 
decreasing temperature. The order parameter ql,o(z) = (cos e) is negative throughout 
the interface, which is consistent with a weak net alignment of the interfacial dipoles 
pointing towards the bulk liquid. The order parameter qz.o(r) = (P2(cos e)) is negative 
on the liquid side and positive on the vapour side of the interface, as has been found in 
several other studies [7-13,23,27]. These features indicate a preference for molecules 
to orient their dipole axes parallel to the interface on the liquid side and perpendicular 
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Figure 7. The order parameter q2 &) for 
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Figure 8. The order parameter q&) for 
various temperatures. 

on the vapour side. The liquid-side tendency generally plays the dominant role in 
observable interfacial phenomena, owing to the larger number density on this side. On 
the other hand, the negative value of q,,,, is mainly the result of a slight asymmetry 
between the up and down orientations on the vapour side. 

The order parameter q2.2(z), which, following from (3.10), is explicitly given by 
*sin28 cos 2 ~ ) .  exhibits a similar albeit inverted oscillatory behaviour. From its defi- 
nition this indicates that, on average, the molecular symmetry planes tend to align 
perpendicular to the interface (Le. x = 0) on the liquid side and parallel = 90') on the 
vapour side. 

4.3. Surface electricfield andpotential 

We now apply the preceding results to the calculation of the surface potential AV. We 
also consider the macroscopic interfacial electric field, which by symmetry only exhibits 
a component E&) in the direction normal to the interface. Following the analysis of 
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Wilson et a1 [I91 the following expression is a multipole representation of the electric 
field for a system of electrically neutral molecules 

I d  ( 2 d z  E , @ )  = -4z  P,(z) ---@&) + . . . 
where P&) is the z-component of the dipole density and O,,(z) is the zz-component of 
the quadrupole density. The electrostatic potential q ( z )  at position z, relative to the 
potential q ( m )  in the bulk vapour phase, is then obtained from the integral of the field, 

A q ( r )  = q(z)  - q ( m )  = dz' E&') I,' 
= - 4 i ~  dz' P2(z') - 2~[O, , (z )  - O,,(m)] + . . . . (4.2) 

fz= 

The total potential difference between the bulk phases follows on  taking the limit 
z+ -min(4 .2) ,  

A q  = -4nl-: dz'P,(r') - ZZ[O,(-m) - O,,(m)]. (4.3) 

In contrast to (4.1) and (4.2) the truncation at the quadrupolar level in (4.3) is exact 
since higher multipole terms involve z-derivatives that vanish in the bulk phases. 

ThemeanpolarizationP,(z)isrelated tothenumberdensityand theorderparameter 
VI.O(Z) = (cos 0) by 

Pz(z) = VP(z)V, .o(4 .  (4.4) 
Inananalogousway,O,,(z)isrelatedto theangularaverageofthemolecularquadrupole 
moment. For arbitrary Cartesian components a, p, we have 

oeO(z) = p(z) (2 q , r lmrz# )  = p ( Z ) ( ~ , p ( w ) )  (4.5) 

where r, is the a-component of the position of the partial charge q, relative to an 
arbitrarilychosencentre. It isto be noted that the tensorOWp(w)definedin(4.5)contains 
a non-vanishing trace and thus differs from the conventional quadrupole moment 
Qng(o), to which it is related by 

~ ~ ~ ( 0 )  = JP,~(O) - 06,1 (4.6) 
where 0 = Tr 0/3 .  Although the occurrenceof @,#rather than Qep: in these expressions 
may seem unusual, this is related to a n  important condition, namely that the physical 
quantities E,(z) and A q ( z )  are in fact independent of the choice of molecular origin, 
whichisarbitrary. (Thisexact condition strictlyrequiresthat themultipoleseriesin(4.1) 
and (4.2) be carried to all orders.) As discussed in [19], this condition is violated if only 
the dipole density term is retained in (4.1) to (4.3). which argues against the latter 
method for evaluating interfacial electrostatic properties [14,16]. 

From (4.5) and (4.6). and using the CzV symmetry of the water molecule (taking the 
origin on the symmetry axis), it is straightforward to show that 

O,,(Z) = P(Z)[O + ! t Q z , z * ~ 2 , 0 ( ~ )  + 4 f l ( Q x , , >  - Q y , y ~ ) ~ z . z ( ~ ) l .  (4.7) 
esu. Noting the magnitudes of For the T I P ~ P  model [26 ] ,  we find that 0 = 1.488 x 
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Figure 9. The total electric field & ( I )  and 
the separate dipolar and quadrupolarmn. 
tributiontoE,(r)at T =  430K.Thepoints 
are the simulation results from [SI at T= 
325 K. 

Figure 10. The surface potential Arp. as 
well as the separate dipolar and qua- 
drupolarcontributionsto Arp asa function 
of temperature. The simulation data are 
from [SI and [19]. 

qz.o and qz,z from figures 7 and 8, one sees that the second and third terms in (4.7) 
contribute at most 1% to the value of O&) and hence are essentially negligible. Thus 
O,,(z) = p(z)O for all z. This is of course exact in the bulk limits, and substitution into 
(4.3) then gives the result given earlier in (2.1). 

The electric field calculated from (4.1) at T = 430 Kis plotted in figure 9, along with 
the separatecontributionsfrom P,anddO,,/dz. It isclear that thedominant contribution 
comes from the quadrupole term, which isessentially proportional to the density gradient 
dpldr and thus has no direct connection to surface orientation ordering. The simulation 
resultsfor E, from [S] areshownfor comparison. Thequalitativeagreement between the 
magnitudes of the theoretical and simulation results must be viewed as quite fortuitous, 
however, since they pertain to quite different temperatures, the simulations being at 
T = 325 K. A noticeable difference between the data is the occurrence of a zero in E, 
and positive values of the latter at negative (liquid side) distances z according to the 
simulations, which are absent from the present theoretical results. This suggests there 
is a more substantial dipolar contribution from P, at the lower temperature of the 
simulation study. 

The total surface potential A p  according to the present theory is shown in figure 10 
as a function of T. Here again the separate dipolar and quadrupolar contributions are 
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presented, once more indicating the dominance of the latter, which in this case depends 
only on the difference in bulk densities and the value of 0. At T = 430 K,  the dipolar 
and quadrupolar contributions are approximately 0.1 V and -0.9 V, respectively. A 
roughextrapolation to lower temperature indicates that the dipolar contribution ismuch 
weaker than that given by the simulations of Wilson eta1 [5,19], while the magnitude of 
the quadrupolar term is about 20% larger, the latter because of the larger density 
differencep, - pGpredicted by thepresent theory. Asdiscusedin [5], thenegativesign 
of the totalcalculated value of Ap, disagreeswith that inferred from recent experiments, 
which would be consistent with the dipolar contribution alone. Since the methods for 
measuring AV are indirect, it appears that the surface potential is anappropriate for 
comparing theory and experiment, and that further studies of interfacial electrostatics 
should examine more directly measureable quantities. 

4.4. Ellipsometry 

The quantity usually considered in ellipsometry is the coefficient of ellipticity p, given 
by [14,281 

- ?c (&G + &L)'/Z 
P = n  (&G - &L) q 

where A is the wavelength of the light beam used in the experiment, and 

(4.9) 

Here q(z) = E&) and E ~ ( z )  = ~ ~ ~ ( 2 )  are components of the inhomogeneous dielectric 
tensor parallel and perpendicular to the interface, respectively. Following Matsumoto 
and Kataoka [14] and assuming the Clausius-Mossotti formula, we relate the com- 
ponentsofthe dielectric tensorto thenumber density and thecorrespondingcomponents 
of the mean polarizability tensor by 

(4.10) 

Here (av) denotes the average over angles, weighted by&, U ) ,  of the space-fixed y y  
component of single-molecular polarizability tensor. Rewriting equation (23) of [14], 
we have 

E&) = (1 + 8iTP(z)(a7y)) / ( l  - 4JTdZ)(crW)). 

(axx) = cr - G ( z ) / 2  

(CYzz) = a + G ( z )  
(4.11) 

where z ( z )  is defined in (2.4). Since we find (see below) that I=&-) < a, an accurate 
approximation to q is obtained by linearizing (4.9) and (4.10) in AOI(Z)/LY, which leads 
to t] = qo -t Aq with the latter quantities given by (2.2) and (2.3). As usual, the integral 
for Aq will be dominated by contributions from the liquid side of the interface, since the 
factor E(Z)  - 1 = 

As in [14], we use the values of Murphy [29] for the polarizability components of 
water. These values yield 

CY = 1.470 x lo-" cm3 A q  = -0.00233 x lo-" cm3 

A a L  = 0.113 x cm3. (4.12) 

- 1 is very small on the vapour side. 
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IXLO* 
Figure 11. The total ellipticity coefficient p 
and the contribution to p from AV as a 
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Noting from figures 7 and 8 that, on the liquid side of the interface, q2," is negative with 
a maximum magnitude 1 qz,@ - 0.1, while q2.2 is positive and hasa maximum magnitude 

= 0.01, one sees using (4.12) that both terms in (2.4) givepositiue contributions to 
A(Y(z)/(Y, with a total magnitude of about 5 x (Note, however, that the value of 
Au,, is only marginally negative, and a slight shift in the values of the polarizability 
components could result in the opposite sign for Am(,?).) It follows from (2.3) that Aq 
is negative, which is the same sign as qo but roughly three orders of magnitude smaller. 
This is shown in figure 11 ,  where we separately plot the total ellipticity coefficient p and 
the contribution to p from A q .  Note that the total value of p increases slowly with 
increasing temperature, and this is attributed to broadening of the interface that affects 
the isotropic component qo, while the anisotropic component decreases with tem- 
perature because of weakening of the orientational order. A smooth extrapolation of 
the curve for p to lower temperature yields good agreement with both experimental 
results 1301 and the simulation results of Matsumoto and Kataoka 1141. 

The very small magnitude of Aq compared with qo is consistent with the findings of 
Matsumoto and Kataoka 1141, but disagrees with the speculations by Beaglehole [30]. 
Our result that Aq is negative appears to disagree with that of Matsumoto and Kataoka 
[14]. Since we have used thesame valuesfor the polarizability as in [14], and both ofour 
works agree in predicting a predominantly parallel dipolar alignment on the liquid size 
( z  < 0), we conclude that the difference arises from different results for the sign of q2,2.  
which as discussed earlier is mainly sensitive to the distribution of the rotation angle x. 

4.5. Second-harmonic generation 
The final observable considered here is the nonlinear macroscopic susceptibility x(') 
associated with SHG. As described in section 2.4, x(') is related to the average over 
angles (0) of the molecular hyperpolarkability tensor. This average over angles can be 
performedbyusingtherelation betweenspace-ked(m, b, y )  andbody-fixed(", p,  y ' )  
components of the third-rank tensor f3, 

B,,+,(w) = ( ~ P p a .  (w)Dw (w)B,yrv (4.13) 
where the summation convention is implied. Here D,,.(w) = cos Owwf denotes the direc- 
tion cosine between the space-fixed, a, and body-ked, a', axes. For a molecule with 
Gv symmetry, the non-vanishing body-ked components of 0 are 
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1 ,  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,)I Figure 12.The susceptibility P ' a s  a func- 
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are from 1311. as described in the text. T/K 

IXLO".  

(4.14) 

where we have assumed the static limit, that is we neglect dispersion effects. A straight- 
forward calculation, taking into account the azimuthal symmetry of the interface, then 
leads to the following results for the non-zero components of (6): 
(P,) = (Pzyy) (and permutations) 

= k P o ( ~ 1 . 0  - ~ 3 . 0 )  + 'hP1(4Vr.o + 6~3 .0  - f l ~ 3 , z )  

+ hPz(4~1 .0  + 6V3.0 + ~ ' 3 ~ 3 . 2 )  (4.150) 

wan) = 6(3Vl .0  + 2 V 3 . 0 )  + ikBi(2Vi.n - 2V3.0 + -13.2) 

ikPz(2Vl.o - 2V3.0 - f l V 3 . 2 )  (4.15b) 

where V ~ , ~ ( Z )  = f l (s in2Bcos @cos 2x).  The relations in (4.15) satisfy the sum rule 
(generalizing that mentioned in [31]) 

(4.16) 

Note that the components of (6) are non-zero only in the interfacial region, since the 
order parameters vanish in the bulk phases. The corresponding components 
,& and xpir of the susceptibility are then obtained by integrating across the interface 
according to (2.6). 

The results of the present theory for the susceptibility components as functions of 
temperature are given in figure 12. For values of the molecular hyperpolarizability, we 
have extracted the best estimates contained in the recent work by Maroulis [33], which 
are Po = - 14.44, PI = -9.95 and P2 = -5.61, in atomic units (au). The susceptibilities 
are positive and decrease monotonically with temperature. The positive sign is a result 
of the product of negative p with negative values of the order parameters in (4.15), 
which are dominated by V , , ~ ( Z )  (see figure 6). In addition, xgz >&A, consistent with 
(4.15) and dominance by the order parameter v ~ . ~ .  

( P A  + 2(P,) = ( P o  +PI  + P2)Vl.O.  
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Comparisonof our results for ~2 and x$dz with the recent experimental dataof Goh 
et ai [31] is problematic, since our calculations are restricted to high temperatures, 
T >  400 K, and the measurements of [31] did not provide absolute values of the sus- 
ceptibilities. Two other factors complicate the comparison of theory and experiment. 
The first is the discovery in [31] of a significant difference between the susceptibilities 
,ygL and xp&, which should be equal in the static limit under the dipole approximation 
considered in this work (see (2.5)) .  While frequency-dependent corrections produce 
differences f3xt,t,t = &,.,, # &,.,. and &2-y8 = pyy.y2z. # & y ~ y 8  in the molecular hyp- 
erpolarizabilities that could lead to such differences between the macroscopic sus- 
ceptibility components, these effects are not expected [32] to be significant at optical 
frequencies in the caseofwater. ThusGohetal[31,32] attributed thedifference between 
,y$\ and& to quadrupolar contributions to the measured SHG signals. The relative 
importance of the latter effects remains subject to some controversy [34], so we defer 
analysis of this possibility to future work. The other caveat is that, in ref. [31]. it was 
deduced that the sign of the measured susceptibilities for water is actually negative. Goh 
et al interpreted this finding to be consistent with a negative value of v , , ~  by taking 
positive rather than negative signs for the hyperpolarizabilities, as suggested by earlier 
measurements of electric-field-induced SHG in bulk water. On the other hand, an earlier 
measurement 1351 of the susceptibilitiesfor a pure water surface yielded apositive value, 
,yp>x = 8.15 x lo-'* esu. We have used the latter value (assuming the measurements in 
[35] were done at room temperature, T = 295 K) to provide an absolute scale for the 
data of Goh er a1 [31]. and have plotted these data in figure 12. These are seen to be 
roughly consistent with extrapolation of our results to lower temperature. 

5. Concluding remarks 

From our high-temperature extended mean-field theory, together with an isotropic plus 
point multipole model for the water-water intermolecular potential, we predict the 
following preferred molecular orientations at the liquid/vapour interface: 

(i) the most probable dipole alignment is parallel to the interface on the liquid side. 
and perpendicular on the vapour side; 

(ii) the dipole-down (i.e. protons towards the liquid side) orientation is slightly 
preferred over the dipole-up orientation; 

(iii) the molecular plane tends to align perpendicular to the interface on the liquid 
side, and parallel on the vapour side. 

Of the four experiments discussed, in the case of water, SHG appears to be the 
best candidate for probing experimentauy the preferred molecular orientations at the 
surface. There are, however, some remaining difficulties to be overcome, both theor- 
etical and experimental, before unambiguous information about the preferred orien- 
tations can be extracted from experiment. 
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