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Molecular orientational structure of the water
liguid /vapour interface

B Yang, D E Sullivan, B Tjipto-Margot and C G Gray
Physics Department and Guelph-Waterloo Program for Graduate Work in Physies,
University of Guelph, Guelph, Ontario N1G 2W1, Canada

Received 20 May 1991

Abstract. Theeretical and experimental results for the distribution of molecular orientations
at the liquid/vapour interface of water are compared. The present calculations are based on
an extended mean-field density functional theory applied to an intermolecular potential
model containing dipolar and quadrupolar interactions, with parameters chosen to agree
with the TIpap model of water. The results for the orientational order parameters at the
interface are used to calculate several observable quantities as functions of temperature,
namely: (i) the surface electrostatic potential; (i) the coefficient of ellipticity; (iif) the
nonlinear susceptibility measured by second-harmonic generation. Comparisons are made
with both the experimental and computer simulation data for water, The limitations of
current methods for revealing the preferred molecular orientations at an interface are
discussed.

1. Introduction

Recently, using the x-ray reflectivity technique [1], there has been progress in the long-
standing problem [2] of the experimental determination of the number density profile
p(z) at the liquid/vapour interface. For molecular fluids such as N,, HCI and H,0, the
more detailed quantity p(z, w) is also of interest, giving the distribution of density and
molecular orientation @ along the direction z normal to the surface. In this paper we
briefly review some relevant experiments, and compare the results of our recent
extended mean-field-theory calculations for water [3] with experiment, and also with
the results from computer simulations [4, 5].

Previous theoretical [6-11] and simulation work [12, 13] for o(z, @) has been limited
tolinear molecules, apart from the recent simulations of water [4, 5, 14, 15] and methanol
[16]. In comparing our calculations with simulations we mainly restrict ourselves to
[4, 5], since the potential model (T1P4P) employed is closest to the one we use (see section
4).

It has been found necessary [3, 11] to extend the standard mean-field theory by
including pair correlations to the lowest order contributing, in order to obtain orien-
tational symmetry breaking in the interfacial region. We also find it necessary to include
quadrupolar, as well as dipolar, intermolecular forces, in order to break the xy-plane

1 Present address: Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
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Fipure 1. The surface tension of (#) Ar (from [17}) and (#) H,0 (from [ 18]} as 2 function of
temperature.

reflection symmetry. We find a slight preference for the water dipole molecules at the
interface tobe pointingdownwards (i.e. towardsthe liquid side) compared with upwards.

2. Review of relevant experiments

2.1. Surface entropy

We recall the relation [2] §* = —dy(T)/dT between the surface entropy 5* and surface
tension ¥(T), where T is the temperature. In figure 1 we show ¢(T) for Ar and H,0.
Note that |dy(T)/dT]| increases monotonically for Ar with decreasing T, whereas there
is an inflection point for H,O at T = 525 K. We interpret the decreasing slope below
525 K for H,O as evidence of interfacial orientational ordering, which reduces the
surface entropy. The evidence is obviously indirect, and it is impossible to obtain details
of the preferred molecular orientations from surface entropy measurements.

2.2. Surface potential

The surface potential A is the work done per unit charge in moving a hypothetical test
charge through the interface, from the vapour to the liquid side. For non-polarizable
molecules A is given rigorously by [19]

Ap = —dau f " p(z){cos 6} — 270(py. — pg) (2.1

where 0 is the angle between the molecular dipole moment u and the z-axis, where
positive z corresponds to the vapour side of the interface,

{ . .)=fdw_f'(z, w)(...)

with f (2, @) the orientational distribution function defined in (3.5) below, p,_and p, are
the bulk liquid and vapour densities, respectively, and © = }Z g,r? is one third of the
trace of the quadrupole moment tensor of an isolated molecule (see, e.g., equation
(2.54) of {20]). The derivation of (2.1) is discussed further in section 4.3.
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Figure 2. A schematic diagram of an ellipsometry experiment, with the polarization vector
p in the plane of the page. G and L denote the gas and liquid sides of the interface,
respectively.

Since experiments are performed using real ions that interact with water molecules
(e.g., solvation occurs), rather than with hypothetical test charges, the relation between
{2.1) and what is measured is somewhat obscure [5]. For water, Ap appears to be
positive, and about 50 mV in magnitude [5]. As we shall see, the quadrupole term
appears to be much larger than the dipole term for water, which precludes learning much
about {cos &) for water from Agp measurements.

2.3. Ellipsometry

In figure 2 we show schematically a beam of light partially reflected off the liquid surface,
with polarization state p of the incident beam in the scattering plane as shown, If the
angle of incidence 8, equals the Brewster angle g, the reflected intensity vanishes, by
the definition of 85. In actuality, the reflected intensity completely vanishes only for an
infinitely sharp interface. The real interface is at least a few angstroms thick, and the
reflected amplitude is proportional to # = 1y + A#n, where the isotropic and anisotropic
contributions are given by (see section 4.4}

o = j RICORES COREE @22
LEG) Aa(z)

g2)!)  «

Here &(z) is the local dielectric constant for the frequency of the light wave given in
terms of p(z) approximately by the Clausius—Mossotti relation, - and £C are the bulk
values, « is the mean polarizability of a molecule, and Aa(z) is given by

Ac(z) = Aeynao(z) + B, ny,(2)/VE (2.4)

- -3 f dz{e(z) — 1][e(z) + 2]( 2.3)

where Ay = a,, — wand Aa, = @, — a,, are molecular polarizability anisotropies,
with &, etc principal-axis componentst. The local order parameters i, ,(z) are defined

t For the definition of the principal axes used, see [20], p 582. Briefly, z’ is the twofold axis, and z'x" is the
malecular plane.
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in (3.10) below. The term (2.3} contains the information about the preferred molecular
orientations in the interface. As discussed in section 4, for water this term is found to be
several orders of magnitude smaller than the isotropic contribution 4 and may be
difficult to detect experimentally.

2.4. Second-harmonic generation

If the incident beam in figure 2 has frequency w, the reflected beam also has frequency
w to a good approximation. However, with high-intensity laser sources, one can detect
small additional components at frequency 2w, 3w, . . . [21]; it is the 2w component, the
second-harmonic generation (SHG), which interests us here.

The SHG has its molecular origin in the hyperpolarizability 8 of a molecule. In the
presence of an external electric field E(f) = E, cos wt, the dipole moment g4 induced
in a molecule is given by (see, e.g., [20], p 540)

Ru=c-E+iB:EE+ ... - O (2.9)

where the additional terms . . . do not concern us here. In (2.5}, & - E is the usual linear
response term, with a the polarizability, and 48 : EE is the non-linear response term. If
E varies at frequency w, EE wiil vary at 2w, so that SHG arises.

One can relate the nonlinear macroscopic susceptibility ¥ to B in the same way that
one relates the linear susceptibility y to «. To lowest order in §, neglecting local field
effects, one finds [21]

X = f " dzp(2)(B). (2.6)

We see from (2.6) that to obtain non-vanishing SHG we require: (i) 8 # 0, that is
molecules such as HCl and H,0, which lack a centre of inversion: (ii) {8} # 0, that is
the orientational average must be non-vanishing. In bulk liquid and gas, (8) =0, so
that (2.6) will be sensitive only to the surface molecules, where there are preferred
orientations.

For H;O, as shown in section 4.5, {8} can be expressed in terms of the following
three order parameters n; ,(z) defined in (3.10): 7, ¢, 13 9 and 73 ;. The principal-axis
components B, Bypxs By of B (see footnote on p F111) are also involved.

Of the four experiments described SHG appears to be the best candidate for studying
the alignment of molecules at surfaces. The method is, however, limited to non-
centrosymmetric molecules.

3. Theory

The present calculations are based on an extended mean-field theory [3, 11] for non-
uniform molecular fluids, which generalizes the deansity-functional methods used in
recent years for studying interfaces of liquid crystals [22, 23] as well as other systems
[8, 9]. The particular generalization of these earlier theories is intended to include non-
linear (in practice, quadratic) orders of the anisotropic part of the intermolecular pair
potential in the free-energy functional. This is motivated by the failure of standard mean-
field theory, as well as other approaches that contain only linear orders of the anisotropic
potential {6, 7], to account for any interfacial orientational ordering induced by purely
muitipolar anisotropies. An extended mean-field theory similar to the one considered
here was first introduced by Teixeira and Telo da Gama [11] and was applied to a model
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fluid with dipole—dipole interactions. The free-energy functional employedin the present
work differs slightly from that in [11], as pointed out below. Furthermore, we generalize
the anisotropic part of the potential to include dipole—quadrupole and quadrupole-
quadrupole couplings, which appear in a more suitable model [24] for the description of
water.

A derivation of the extended mean-field theory is described elsewhere [3], and here
we shall merely summarize the key points. The theory is based on an intermolecular pair
potential of the form_

Vir o, rw,) = Vilrp) + Vien(riw, ryo,) (3.1)
where r; and w; = (8,, ;. x)) denote the position and Euler angles of molecule ;. The
isotropic reference potential V, is assumed to depend only on the intermolecular
distance ry, = |r, — r||. The ‘perturbative’ part of the interaction is in turn decomposed
as

Vier(r1 @1, r3) = Vou(rp) + Vig(r oy, ;). (3.2)
Inkeeping with a “van der Waals’ type of description, V.is regarded as purely repulsive,
and here is taken as a hard-sphere potential with molecular diameter ¢. The function
V.. describes isotropic attractive interactions, while all anisotropic components of the
potential are contained in V.

The theory consists of expressing the grand potential Q as a functional of the one-
particle probability density p(r, @),

Q= Qref + AQMF + AQEMF’ (3.3)
The first term €., is the total contribution to the grand potential that results from the
interaction V (r;») alone, albeit in the presence of the full probability density p(r, ®).
Applying an often-used local thermodynamic approximation, we have [3, 11, 22, 23]

Q= [ drtlp(®)) + [ drdo p(r, )R nl8T(r, )] - ud - (3.9

where f, {p) is the bulk Helmholtz free-energy density of a uniform reference fluid with
number density p, with u, the total chemical potential of the system. The second integral
in (3.4) includes the contribution of the orientational entropy, where f(r, @) is the
normalized orientation distribution function

Fir, @) = p(r, w)/p(r)
o) = [ dw p(r, ).

The second term in (3.3), AQy, describes the mean-field average of the perturbative
potential,

(3.5)

AQuyr = [ dry do, dry dory p(r1, ©1)Vpea12)p(r2. 02). (3.6)

The third term in (3.3), AQgmr, accounts for corrections to the mean-field approxi-
mation, and is given here by [3]

AQeyp = — gjd"l dw, dr, dw, p(ry, wl)[Van(lz)]zp(er @;)
2
- g[dﬁ dr; p(r1)p(ra) (f dw, dwzf("n wl)van(lz)f(rz’ wz)) (3.7)

. gjdﬁ o p(r,)p(rz)fdwlf(’l’ ;) (jdwz Van(IZ)f(rz,wz))
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where = (kT)™" is the inverse temperature. This has been derived in [3] from the
leading-order correction to mean-field theory in powers of the inverse range of the
perturbation V., [25], formally assuming the latter to the be weak and of long range,
and with the additional approximations of keeping only quadratic terms in V., and
replacing reference fluid correlation functions by their high-density limits. Note that
(3.7) contains only the anisotropic component V,,(12) rather than the full perturbation
Pe,,(l-) as it is easy to show that the isotropic component V,,(12) cancels from that
expression. This differs from the form of the correction term used in [11], which retains
only the first line in (3.7) with the full V., (12) in place of V,,(12). In practice we have
made one simplification of (3.7), name]y to retain only up to quadratic order in the
difference of the distribution function from its isotropic limit, Af(r, w) = f(r, w) —
1/87%, motivated by the anticipated weakness of interfacial orientational ordering.
The equilibrium probability density o(r, w)1s the solution of the variational condition
8Q/8p{r, @) = 0. This leads [3] to coupled integral equations for p(r) and f(r, w) that
we shall not write out explicitly here. For the potential components, we have chosen

Vau(rin)t = —4e(a/r ;) rp>0

3.8
= 0 2 < U ( )
with V,,(12) the potential generated by the presence of a point dipole ¢ and non-axial
point quadrupole Q at the centre of each molecule,

Van(lz) = Vu#(l?.) + VPQ(]‘Z) + Voy(lz) + Voo(lz) ¥z >

3,
=0 e <o ( 9)
The potentials (3.8) and (3.9) can be taken equal to zero for ry; < o because of the hard-
sphere core potential. Explicit expressions for the multipolar interactions V,,(12), etc,
in terms of distance r(; and generalized spherical harmonics D, , (w,) of the molecular
orientations, are given in [20]. We assume the molecular symmetry is C,,, as is appro-
priate for water.

The theory has been applied to a planar interface between coexisting liquid and
vapour phases. The probability density is assumed to vary spatially only in the direction
z normal to the interface, with positive z on the vapour side as in figure 2. All spatial
integrals entering the theory can then be reduced to one-dimenstonal quadratures along
z, involving the number density p{z) and several orientational order parameters 7, ,(z)
defined as

N1.a(2) = (Dh (@)Y + (D)_,(w)*y n#*0

(3.10)

M1.0(2) = (Dlp(@)*) = {P,(cos 8))
where P, is the /th-order Legendre polynomial. Implicit here is the fact that the dis-
tribution function f{z, @) should be independent of the azimuthal orientation of the
molecular dipole axis about the z-axis, because of rotational isotropy in the plane of the
interface. The relevant Euler angles in e are then 8 and ¥, the former denoting the angle
between the molecular dipole (or z') and the space-fixed z-axis, and the latter denoting
the angle between the molecular symmetry plane (or x'z’ plane) and the zz' plane [20].
See figure 3.
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/O.

Figure 3. The orientation of a water molecule; z is the space-fixed axis and 2z’ is the body-
fixed axis.

The solution of the integral equations for p(z) and f(z, @) is obtained by spherical
harmonic and iterative techniques similar to those used in previous work [22, 23].
For given molecular interaction parameters and temperature T, the solution requires
specifying the chemical potential . as well as the densities pg and p, of the bulk
coexisting vapour and liquid, the latter entering as boundary values for p(z) in the
limits z—> « and z — — o, respectively. These are found by applying a double-tangent
construction to the bulk Helmholtz free-energy corresponding to this theory, as
described in more detail elsewhere [3]. The Carnahan—Starling approximation is used
for the reference hard-sphere free-energy density f..{(p). Note that, because of the
rotational isotropy of the bulk phases, the order parameters 1, ,(z) vanish in the limits
Z—» %+ oo,

4, Results and comparison with experimental observables

4.1. Molecular parameters

We have implemented the preceding theory using values of the dipole and quadrupole
moments consistent with the charge distribution of the TIPsP model of water [26]. These
are listed in table 1, along with our choices for the isotropic interaction parameters £ and
¢. The former is equal to the Lennard-Jones strength parameter £, ; of the TIp4P model
[26]). Rather than equating o with the corresponding Lennard-Jones diameter of the
Tip4P model, we have instead varied values of o to yield a theoretical value for the

Table 1. Values of the molecular potential parameters for water used in this work: g is the
magnitude of the dipole moment and Q. are principal-axis components of the quadrupoie
moment, with the origin taken at the oxygen atom.

1 (107 ¥ esu) Qry (107 % esu) Coe = Oyy (1078 es0) £{10"%erp) o{A)

21773 0.17119 4,29311 1.0777 2.95

.
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Figure 4, The water interfacial tension y as
T/T, a function of T/T..

liquid—vapour critical temperature T, comparable with experimental and simulation
values for water [3]. The value quoted in table 1, o = 2.95 A, results in T, = 604.97 K.

It is important to mention that the values of the quadrupole moments listed in table
1 are based on choosing the molecular centre at the site of the oxygen atom in the water
molecule, This is consistent with the centre used for the spherically symmetric Lennard-
Jones component of the TipaP model. The significance of this choice of centre is that it
yields a positive value for the 0O,,,, quadrupole moment. We have shown in detail
elsewhere [3] that, in the present theory, the direction of interfacial dipolar alignment
is determined by the sign of Q... such that a positive value of the latter results in a
preference for surface dipoles to point towards the liquid. This agrees with the earlier
work by Stillinger and Ben-Naim [24].

4.2, Interfacial tension and structure

The basic results of the calculations are the interfacial tension y (given by the excess
grand potential per unit area), the density profile p(z), the orientational distribution
function f(z, @), and the order parameters , ,(2) derived from f(z, w) according to
(3.10). One drawback of the present theory, which we attribute to its basis in a per-
turbation expansion in powers of V,,.(12}, is that it is limited to fairly high temperatures.
In particular, for the present choice of interaction parameiérs, the interface becomes
unstable at temperatures lower than 400 K. Below this temperature, p(z) and f(z, @)
develop oscillations which, on iteration, increase in both range and amplitude and
appear to grow into the bulk liguid. In addition, the interfacial tension y begins to
decrease with decreasing temperature, These features suggest that the butk isotropic
liquid becomes unstable relative to an ordered, smectic-like phase [3]. Despite this
limitation, comparison of our results [3] with those of computer simulations indicates
that the theory gives the correct interfacial orientational structure in the temperature
regime of its stability.

Figure 4 shows the interfacial tension vy as a function of reduced temperature T/T,
in the high-temperature region, to within a few degrees of the critical point. The
divergence of the interfacial width closer to T, precludes accurate numerical calculations
in this limit. The experimental surface tension is also shown (with abscissa scaled in
terms of the experimental value, T, = 647 K). The theoretical surface tension is seen to
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increase much more rapidly with decreasing temperature compared with the exper-
imental data, related to the inadequacy of the theory at low temperatures. Note that, in
the temperature range shown in figure 4, the theoretical curve does not exhibit the
inflection point associated with the onset of decreasing surface entropy, which was
described in section 2.1.

Curves of the calculated number density p{z) at various temperatures in the allowed
range of the theory are shown in figure 5. These exhibit the expected broadening of the
interfacial width with increasing T/T..

For displaying the interfacial orientational structure, we focus here on the order
parameters 1, ,(z). Full details of the distribution function f(z, w)itself are described in
[3]. Figures 6 to 8 show plots of the three lowest-order order parameters 1, ol2), 172.0(2)
and 7, o(z), respectively. In all cases the order parameters increase in amplitude with
decreasing temperature. The order parameter 1, o(z) = {cos 8) is negative throughout
the interface, which is consistent with a weak net alignment of the interfacial dipoles
pointing towards the bulk liquid. The order parameter 1 o(z) = {P,(cos 8)} is negative
on the liquid side and positive on the vapour side of the interface, as has been found in
several other studies [7-13, 23, 27]. These features indicate a preference for molecules
to orient their dipole axes parallel to the interface on the liquid side and perpendicular
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on the vapour side. The liquid-side tendency generally plays the dominant role in
observable interfacial phenomena, owing to the larger number density on this side. On
the other hand, the negative value of », ¢ is mainly the result of a slight asymmetry
between the up and down orientations on the vapour side.

The order parameter 1, 5(z), which, following from (3.10), is explicitly given by
V#(sin?6 cos 2}, exhibits a similar albeit inverted oscillatory behaviour. From its defi-
nition this indicates that, on average, the molecular symmetry planes tend to align
perpendicular to the interface (i.e. x = 0) on the liquid side and parallel (y = 90°) on the
vapour side.

4.3. Surface electric field and potential

We now apply the preceding results to the caiculation of the surface potential Ag. We
also consider the macroscopic interfacial electric field, which by symmetry only exhibits
a component E.(z) in the direction normal to the interface. Following the analysis of
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Wilson et af [19] the following expression is a multipole representation of the electric
field for a system of electrically neutral molecules

E.(z)= —4n (Pz(z - %d—(iz@u(z) +.. ) (4.1)

where P,(z) is the z-component of the dipole density and ©,,(z) is the zz-component of
the quadrupole density. The electrostatic potential ¢(z) at position z, relative to the
potential @(%) in the bulk vapour phase, is then obtained from the integral of the field,

Ag(e) = 9(2) - p() = | a2’ E2)

- —4nr dz' P,(z') = 27]@,.(z) = @, (%) +. . . . (4.2)

The total potential difference between the bulk phases follows on taking the limit
z— —win (4.2),

Agp = —~4.vrjnc dz' P, (z') — 2a[©,(—=) — ©,,(=)]. (4.3)

In contrast to (4.1) and (4.2) the truncation at the quadrupolar level in (4.3) is exact
since higher multipole terms involve z-derivatives that vanish in the bulk phases.
The mean polarization P,{z} isrelated to the number density and the order parameter

.0(2) = (cos 8) by
P, (2) = pp(2)n:1,0(2). (4.4)

Inananalogousway, ®,,(z)isrelated to the angular average of the molecular quadrupole
moment. For arbitrary Cartesian components &, 8, we have

©us(@) = p(2) ( griaris) = PE)@ () *3)

where r;, is the a-component of the position of the partial charge g, relative to an
arbitrarily chosen centre. It isto be noted that the tensor © ,5(w) defined in (4.5) contains
a non-vanishing trace and thus differs from the conventional quadrupole moment
Q@.s(w), to which it is related by

Qup(w} =3O 45(w) ~ OB 45] (4.6)

where @ = Tr ©/3. Although the occurrence of © g rather than @,z in these expressions
may seem unusual, this is related to an important condition, namely that the physical
quantities E,(z) and Ag(z) are in fact independent of the choice of molecular origin,
which is arbitrary. (This exact condition strictly requires that the multipole seriesin (4.1)
and (4.2) be carried to all orders.) As discussed in [19], this condition is violated if only
the dipole density term is retained in (4.1) to {(4.3), which argues against the latter
method for evaluating interfacial electrostatic properties |14, 16].

From (4.5) and (4.6), and using the C,, symmetry of the water molecule (taking the
origin on the symmetry axis), it is straightforward to show that

ezz (Z) = p(l) [G) + §Qz’z'n2.0(z) + é\/g(Qx'x' - Qy'y')n‘ll(z)]' (47)
For the Tipap model [26], we find that @ = 1.488 X 107 esu. Noting the magnitudes of
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N2.0 and 1, ; from figures 7 and 8, one sees that the second and third terms in (4.7)
contribute at most 1% to the value of ©,,(z) and hence are essentially negligible. Thus
8,.(z) = p(z)@ for all z. This is of course exact in the bulk limits, and substitution into
(4.3) then gives the result given earlier in (2.1).

The electric field calculated from (4.1) at T = 430 K is plotted in figure 9, along with
the separate contributions from P, and d®,,/dz. Itisclear that the dominant contribution
comes from the quadrupole term, whichisessentially proportional to the density gradient
dp/dz and thus has no direct connection to surface orientation ordering. The simulation
results for E, from [5] are shown for comparison. The qualitative agreement between the
magnitudes of the theoretical and simulation results must be viewed as quite fortuitous,
however, since they pertain to quite different temperatures, the simulations being at
T =325 K. A noticeable difference between the data is the occurrence of a zero in E,
and positive values of the latter at negative (liquid side) distances z according to the
simulations, which are absent from the present theoretical results. This suggests there
is a more substantial dipolar contribution from P, at the lower temperature of the
simulation study.

The total surface potential Ag according to the present theory is shown in figure 10
as a function of T. Here again the separate dipolar and quadrupolar contributions are
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presented, once more indicating the dominance of the latter, which in this case depends
only on the difference in bulk densities and the value of ©@. At T = 430 K, the dipotar
and quadrupolar contributions are approximately 0.1 V and —0.9 V, respectively. A
rough extrapolation to lower temperature indicates that the dipolar contribution is much
weaker than that given by the simulations of Wilson ez al [3, 19], while the magnitude of
the quadrupolar term is about 20% larger, the latter because of the larger density
difference p| — pg predicted by the present theory. Asdiscussedin [5], the negative sign
of the total calculated value of A¢ disagrees with that inferred from recent experiments,
which would be consistent with the dipolar contribution alone. Since the methods for
measuring Ag are indirect, it appears that the surface potential is anappropriate for
comparing theory and experiment, and that further studies of interfacial electrostatics
should examine more directly measureable quantities.

4.4. Ellipsometry

The quantity usually considered in ellipsometry is the coefficient of ellipticity 7, given
by [14, 28]

7 (€8 + )12

where A is the wavelength of the light beam used in the experiment, and
= EGEL
= dz(s z) + —EG—EL). 4.9
n J’_E 1) @) (4.9)

Here g(z) = £,,{z) and £ (z) = £,,(z) are components of the inhomogeneous dielectric
tensor parallel and perpendicular to the interface, respectively. Following Matsumoto
and Kataoka [14] and assuming the Clausius-Mossotti formula, we relate the com-
ponents of the dielectric tensor to the number deasity and the corresponding components
of the mean polarizability tensor by

£(2) = (1 + &7 p(2) e, )/(1 = 4w p(2){ay)). (4.10)

Here {a,,) denotes the average over angles, weighted by f(z, ), of the space-fixed yy
component of single-molecular polarizability tensor. Rewriting equation (23} of [14],
we have ‘

(axx> = E(Z)/Z
(@)= o+ Aa(z)

where Aa(z) is defined in (2.4). Since we find (see below) that | Aa(z)| < o, an accurate
approximation to 7 is obtained by linearizing (4.9) and (4.10) in Aa(z)/«, which leads
to 7 = 1y + An with the latter quantities given by (2.2) and (2.3). As usual, the integral
for An will be dominated by contributions from the liquid side of the interface, since the
factor £(z) — 1 = &% — 1is very small on the vapour side.

As in [14], we use the values of Murphy [29] for the polarizability components of
water. These values yield

a=1.470 x 10~ ¢m? Agy = —0.00233 x 107 ¢m?
Awa, =0.113 x 107 cm?®. (4.12)

(4.11)
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Noting from figures 7 and 8 that, on the liquid side of the interface, 1, , is negative with
amaximum magnitude {7, 5| = 0.1, while #, , is positive and has a maximum magnitude
12 =0.01, one sees using (4.12) that both terms in (2.4) give positive contributions to
Aw(z)/a, with a total magnitude of about 5 x 107%, (Note, however, that the value of
Agy is only marginally negative, and a shght shift in the values of the polarizability
components could result in the opposite sign for Aa(z).) It follows from (2.3) that An
is negative, which is the same sign as 1, but roughly three orders of magnitude smaller.
This is shown in figure 11, where we separately plot the total ellipticity coefficient g and
the contribution to g from A#n. Note that the total value of g increases slowly with
increasing temperature, and this is attributed to broadening of the interface that affects
the isotropic component 174, while the anisotropic component decreases with tem-
perature because of weakening of the orientational order. A smooth extrapolation of
the curve for g 1o lower temperature yields good agreement with both experimental
results [30] and the simulation resuits of Matsumoto and Kataoka {14].

The very smail magnitude of Ay compared with », is consistent with the findings of
Matsumoto and Kataoka [14], but disagrees with the speculations by Beaglehole [30].
QOur result that An is negative appears to disagree with that of Matsumoto and Kataoka
[14]. Since we have used the same values for the polarizability as in [14], and both of our
works agree in predicting a predominantly parallel dipolar alignment on the liquid size
(z < 0), we conclude that the difference arises from different results for the sign of 1, 4,
which as discussed earlier is mainly sensitive to the distribution of the rotation angle y.

4.5. Second-harmonic generation

The final observable considered here is the nonlinear macroscopic susceptibility x'
associated with $HG. As described in section 2.4, x® is related to the average over
angles {8} of the molecular hyperpolarizability tensor. This average over angles can be
performed by using the relation between space-fixed (a, 8, v) andbody-fixed (o', 87, ¥')
components of the third-rank tensor 8,

5&57’ (w) = Da'a" (w)DBﬁ’ ((.O)D vy (w)ﬁa’ﬁ"y’ (4 13)
where the summation convention is implied. Here D, ,(w) = cos 8, denotes the direc-

tion cosine between the space-fixed, &, and body-fixed, a’, axes. For a molecule with
C,, symmetry, the non-vanishing body-fixed components of B are
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ﬁz’z’z' = ﬁ() .
By = Buoyw = Bowr =B (414)
rgz‘y'y‘ = By'z'y' = ﬁy'y'z‘ = ABZ

where we have assumed the static limit, that is we neglect dispersion effects. A straight-
forward calculation, taking into account the azimuthal symmetry of the interface, then
leads to the following results for the non-zero components of (B}

Baxs? =By} (and permutations)
=180 (.0 = M3.0) + F0B1 (4010 + 6130 — V30n;3;)
+ 4582(471,0 + 6730 + V30732) (4.15a)
(Bazd = $(3110 + 2m30) + H5B:1(2010 = 2730 + VE 13,)
+ $5B2(2010 = 2030 — VE Tls‘z) (4.15b)

where #; 2(z) = V 2 {sinf cos @ cos 2y). The relations in (4.15) satisfy the sum rule
{generalizing that mentioned in [31])

(Brzz) + 2Boxed = (Bo + B + B2)N 1o (4.16)

Note that the components of () are non-zero only in the interfacial region, since the
order parameters vanish in the bulk phases. The corresponding components
x5 and x&), of the susceptibility are then obtained by integrating across the interface
according to (2.6).

The results of the present theory for the susceptibility components as functions of
temperature are given in figure 12. For values of the molecular hyperpolarizability, we
have extracted the best estimates contained in the recent work by Maroulis [33], which
are By = —14.44, §, = —9.95 and 8, = —5.61, in atomic units (au). The susceptibilities
are positive and decrease monotonically with temperature. The positive sign is a result
of the product of negative § with negative values of the order parameters in (4.15),
which are dominated by #, o(2) (see figure 6). In addition, ¥, > %, consistent with
(4.15) and dominance by the order parameter 7, 4.
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Comparison of our results for ¥, and x5, with the recent experimental data of Goh
et af [31] is problematic, since our calculations are restricted to high temperatures,
T > 400 K, and the measurements of [31] did not provide absolute values of the sus-
ceptibilities. Two other factors complicate the comparison of theory and experiment.
The first is the discovery in [31] of a significant difference between the susceptibilities
2%, and 3%, which should be equal in the static limit under the dipole approximation
considered in this work (see (2.5)). While frequency-dependent corrections produce
differences B, = By # Bryy and B,y = By # By in the molecular hyp-
erpolarizabilities that could lead to such differences between the macroscopic sus-
ceptibility components, these effects are not expected [32] to be significant at optical
frequencies in the case of water. Thus Goh etaf[31, 32] attributed the difference between
%% and ¥&), to quadrupolar contributions to the measured SHG signals. The relative
importance of the latter effects remains subject to some controversy [34], so we defer
analysis of this possibility to future work. The other caveat is that, in ref. [31], it was
deduced that the sign of the measured susceptibilities for water is actually negative. Goh
et al interpreted this finding to be consistent with a negative value of n, y by taking
positive rather than negative signs for the hyperpolarizabilities, as suggested by earlier
measurements of electric-field-induced SHG in bulk water. On the other hand, an earlier
measurement [35] of the susceptibilities for a pure water surface yielded a positive value,

&) = 8.15 x 10718 esu. We have used the latter value (assuming the measurements in
[35] were done at room temperature, T = 295 K} to provide an absolute scale for the
data of Goh er al [31], and have plotted these data in figure 12. These are seen to be
roughly consistent with extrapolation of our results to lower temperature,

5, Concluding remarks

From our high-temperature extended mean-field theory, together with an isotropic plus
point multipole model for the water-water intermolecular potentiai, we predict the
following preferred molecular orientations at the liquid/vapour interface:

(i} the most probabie dipole alignment is parallel to the interface on the liquid side.
and perpendicular on the vapour side;

(ii} the dipole-down (i.e. protons towards the liquid side) orientation is slightly
preferred over the dipole-up orientation;

(iii) the molecular plane tends to align perpendicular to the interface on the liquid
side, and parallel on the vapour side.,

Of the four experiments discussed, in the case of water, SHG appears to be the
best candidate for probing experimentally the preferred molecular orientations at the
surface. There are, however, some remaining difficulties to be overcome, both theor-
ctical and experimental, before unambiguous information about the preferred orien-
tations can be extracted from experiment.
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